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Free convection in the tilted open thermosyphon 

By F. M. LESLIE 
Department of Mathematics, University of Manchester 

(Received 15 April 1959) 

Approximate solutions are found for the fluid flow and heat transfer in a heated 
cylinder, closed at the bottom and opening a t  the top into a reservoir of cool fluid, 
which has been tilted at a small angle to the vertical. 

One solution is found for large Rayleigh number when the boundary layer does 
not fill the tube, and another for small Rayleigh number when the boundary layer 
fills the tube. In  both cases tilting causes a small increase in heat transfer which is 
proportional to the square of (Zla) tan $, where l/a is the length-radiusratio and $ 
the angle of tilt. 

1. Introduction 
The open thermosyphon consists of a heated vertical cylinder of fluid, closed at 

the lower end and opening at the top into a reservoir of cool fluid. The fluid is 
subject to gravity. An annulus of hot fluid at the walls, being less dense, is 
displaced towards the open end and is replaced by heavier cool fluid moving down 
the centre of the tube. Thus a circulation is created which transfers heat by 
convection from the walls of the cylinder to the reservoir. 

Holzwarth (1938) suggested that a similar system could be used to cool gas 
turbine blades. He envisaged a cylindrical cavity in each blade opening into 
a reservoir of cool fluid in the hub. In  this case the external axial acceleration is 
the centrifugal acceleration, which can be as large as 104g. Since the system is 
rotating, there is also a Coriolis acceleration at right angles to the motion of the 
particles, and hence flow is not quite axially symmetrical. 

No attempt had been made to solve this problem theoretically until Lighthill 
( 1953) investigated the action of the thermosyphon in some detail for laminar and 
turbulent flow. He considered a cylinder whose walls are maintained at a con- 
stant temperature, and which had a constant axial acceleration directed towards 
the lower closed end; and he assumed that the fluid entering the tube along the 
axis at the open end has the temperature of the reservoir. 

In  the present paper an attempt is made to extend Lighthill’s work by con- 
sidering the external acceleration to be at a small angle to the axis. Alcock (1951) 
has pointed out that this problem is similar to that of free convection in rotating 
turbine blades. The component of the buoyancy force perpendicular to the axis 
simulates closely the Coriolis force on the moving fluid. The case of Coriolis forces 
is very difficult to treat, but that of simulated forces can be solved to give a fair 
estimate of the effect. 
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Martin (1957) has done experimental work on this problem, using a heated 
cylinder of fluid closed at the bottom and opening at the top into a reservoir of 
cool fluid. The external acceleration was gravity, and he investigated the effect of 
tilting the cylinder from the vertical position. In  work so far unpublished, 
Martin found that, for Rayleigh number the Nusselt number decreases with 
increasing angle of inclination to the vertical up to 5", where it is 90 % of its value 
for the tube in the vertical position. If the inclination is increased beyond this 
point, the Nusselt number rises to its initial value by 15" and thereafter to 130 yo 
of this value by 45". For smaller Rayleigh numbers the initial decrease is smaller, 
until when the Rayleigh number is there is no decrease and the Nusselt 
number increases steadily to 150 % of its initial value at 45". Martin put forward 
an explanation for this decrease, which is equivalent to there being an instability 
at small angles of inclination for larger Rayleigh numbers. He attributed the 
ensuing rise in heat transfer to an overall decrease in the thickness of the boundary 
layer which is formed at the walls. 

In  the present treatment, only laminar flow is considered, and no attempt is 
made to assess the effects of a breaking down of laminar flow. Attention is given 
mainly to the flow obtained for large values of Rayleigh number, since a typical 
value for gas turbine applications is of the order of lolo; however, a solution is 
also found for small Rayleigh number. 

The most important parameter used by Lighthill is t ,  = (a/Z) Aa, where a is the 
radius of the cylinder and t its length, and Aa is the Rayleigh number based on 
radius. For large t ,  ( > 3400), he found a solution in the form of a rising boundary 
layer a t  the walls and a cool descending uniform core in the centre. Because of 
the complexity of the equations, he used approximate methods of solution based 
on integrated equations which represent the conservation of mass energy and 
momentum across a section of the cylinder. For small t ,  ( < 31 l) ,  Lighthill found 
a similarity solution in which velocity and temperature profiles are similar at  
different axial positions but vary in magnitude linearly with axial distance. 

Solutions of a similar type are found below for the problem of the inclined tube. 
The boundary-layer thickness is found to decrease, giving an increase in heat 
transfer, as the inclination of the external acceleration to the axis is increased, 
which is in agreement with Martin's work. No initial decrease in the Nusselt 
number is found, however, since the model assumed does not allow for instabilities 
in the boundary layer in the cylinder due to unstable stratification on the lower 
side of the tube. This increase in heat transfer varies as the square of (,!/a) tan q5, 
where $ is the angle between the external acceleration and the axis of the cylinder. 
For large t,, where the flow is of the boundary-layer type which does not fill the 
tube, the percentage increase in the Nusselt number is 0-17(Z/a)2 tan2 q5; and for 
small t,, where the boundary layer fills the tube with similarity, this factor is 
2~5(Z/a)~ tan2 q5. It is difficult to compare the results obtained in the present paper 
with those found by Martin in his experiments on account of the initial decrease 
in the Nusselt number due to another effect. However, there does appear to be 
qualitative agreement with his results for smaller Rayleigh numbers where there 
is no initial decrease. They are also supported to some extent by his results for 
larger angles of inclination at all Rayleigh numbers. 
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2. The equations of motion 
Cylindrical polar co-ordinates ( X ,  R, 8)  are used where the X-axis coincides 

with the axis of the cylinder, the origin being a t  the closed end and the positive 
direction towards the open end. The transverse component of body force is 
directed towards 0 = 0. The equations governing the motion are those of con- 
servation of mass, energy and momentum for steady motion; these are 

au 1 a 1 aw 
ax RaR R ae 

respectively 
-+--(RV)+-- = 0, 

1 a2w a2w w 

where U ,  V ,  W are components of velocity in the directions of X ,  R, 8; T is tem- 
perature, P pressure, p density, f the externalaccelerationmaking angle g5 with the 
negative direction of the X-axis; and K is the thermal diffusivity and y the 
kinematic viscosity. 

An equation of state is also required; this is taken to be 

1 1  
- = --(l+a(T-T0)), 
P Po 

where 01 is the coefficient of cubical expansion and the subscript 0 refers to 
conditions at the wall. 

The boundary conditions are 

(7) I U = V = W = O  at R = a ,  or X = O ,  

T = To a t  R = a, or X = 0,  

T = TI a t  R = 0, x = I ,  

where To and TI are constant temperatures, TI being the temperature of the 
reservoir, and a, 1 are the radius and length of the cylinder. 

Since either the flow is of the boundary-layer type or the ratio of radius to 
length is small, second derivatives with respect to X are neglected in comparison 
with those with respect to R. Large Prandtl number is assumed, and as a result 
the inertia terms in the momentum equations are neglected. This procedure was 
adopted by Lighthill and led to an error of 5 yo when the Prandtl number was five. 
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Putting P = Pl +p where p is due to velocity effects, equations (3) to (5) give, 

i (8) 

ap1 -+p, f cos4 = 0,  ax 
when the velocity is zero, 

-- aP1 pots in$  coso = 0, 
aR 

R-+po a 8  f sin4 sine = 0. ae 
Thus Pl is the hydrostatic pressure when the temperature is To throughout. 
Eliminating Pl from (3) to ( 5 ) )  and using (8) and then (6), we find 

[;a;( av) 1 a2v v 2 a w l  lap af sin4(T-To)cos8+y -- R- +-------- = 0, 
P ax ~2 ao2 ~2 ~2 ao 

(10) 

(11) 
To reduce equations (l), (2), (9)) (lo), ( 1  1)  and boundary equations (7) to non- 

dimensioned form the following substitutions are made: 

R = ar, X = Is, 

The equations become 
au1 i a 1 awl 
ax r ar r ae -+--(rvl)+-- = 0, 

where B = (l/a) tan $. The boundary conditions (7) reduce to 

d = v1 = w1 = t l =  O at r = 1, or x = 0, 
a4 } (17) 

t1 = tl = c~fcos$(cr',-T~)- at r = 0, x = 1. 
YK1 

Since there is symmetry about the plane 0 = 0 and the angle q5 is taken as small, 
solutions in the form of the leading terms of Fourier series are obtained: 

u1 = U+Ucose, ~ 1 =  v+vcose,  w1 = wsine, 
pi = p+pcose ,  t i  = T+tcose,  
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where U ,  V ,  P, T ,  and perturbation functions u, v, w, p ,  t are fiulctions of x, r only. 
It should be noted that the symbols U, V ,  P, T ,  andp have been used earlier with 
a different meaning. 

The boundary conditions (17) become 

(18) 1 U = V = T = O  at r = l ,  or x = O ,  

T = t ,  at x = 1 ,  r = 0 ,  

(19) I and u = v = w = t = O  at r = 1 ,  or x = O ,  

v + w = O  at r = O ,  

u = p = t = O  at r = 0 .  

This last condition is necessary because of harmonic variation with 8. 

from 0 to 277 to obtain terms independent of 0, we obtain 
Making these substitutions in (12) to (15) and integrating with respect to 8 

au i a  
ax r ar 
-+-- (rV) = 0, 

i a  av v 
+set+-- r- ---=(lo. 

ap 
ar r a,( a,) r2 

- ._ 

Here &(ua/ax + va/ar - w/r) t and get are of the second order of smallness since 
u, v,  w, t are perturbations; if these terms are neglected relative to other terms, 
equations (20) reduce to those used by Lighthill. He used integrated forms of this 
reduced set of equations (20) to find approximate solutions for U ,  T subject to 
boundary conditions (18). Thus, if i(ua/az + va/at - w / r )  t and + ct are neglected, 
U ,  T may be regarded as known functions of 2, r for all t,, and then can be found 
from Lighthill (1953). 

Equations for the perturbation functions are found by substituting for 
ul, wl, wl, pl ,  tl in equations (12) to (16): equations (12) to (15) are multiplied by 
cos 0 and (16) by sin 8 and then integrated with respect to 8 from 0 to 27r to give 
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Eliminating p between equations (24) and (25), 

No attempt is made to solve these equations as they stand because of their 
complexity. However, they can be expressed as the conservation of mass, energy 
and momentum (associated with the secondary flow) across a section bounded by 
the planes 8 and 8 + d8, z and z + dz, and r = 1 by multiplying by r and integrating 
from 0 to 1 with respect to r, thus 

In  (29) the term containing ap/ax has been neglected, where p is the perturbation 
pressure; this appears reasonable physically and can be justified mathematically 
later. The integrated form of equation (26) is 

The values of equations (21) to (26) at the walls and on the axis are needed to 
determine the profiles to be used in the similarity solution. These are 

Simple radial profiles are assumed for velocity and temperature in finding the 
solution for the boundary layer which does not fill the tube. No attempt is made 
to satisfy equations (31) to (34), and as a result higher derivatives such as 
(a2w/ar2),,, in (30) cannot be expected to be accurate. It is possible to eliminate 
this term using equation (33), giving 
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To eliminate ( P ) ~ = ~ ,  we first integrate (24 )  with respect to r from 0 to 1 : 

and deduce that 

The Nusselt number (based on radius) is given by 

&a 
k(To-Tl)2da' 

N, = 

where Q is the actual rate of heat transfer from the whole wall surface of the tube 
and k: is the thermal conductivity of the fluid. 

Thus 

Also 

where 

olf cos q5 (To - T1) a4 
t ,  = 

af cos q5 (To - Tl) a3 
A ,  = 

YK 
is the Rayleigh number based on radius. 

When the effect of the perturbations upon the solution obtained by Lighthill 
is calculated, several of equations (20) are required in modified form retaining 
the perturbation terms. With the usual boundary layer assumptions (204  
reduces to aP/ar = 0, and, a t  the wall, (20c) becomes 

- g)"+ [i: ( r g ) ]  7=l = 0. 

This equation is used to eliminate P from (20c) which is then integrated over 
a cross-section: thus 

When integrated over a cross-section (20b)  reduces to 
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On the axis (20b)  takes the form 

Equations (38) to (40) with the perturbation terms neglected are in the form used 
by Lighthill. 

3. Boundary-layer solution not Wng tube 

at the walls and a descending flow in a cool uniform core in the centre. 
In  this section a solution is found in the form of a rising flow in a boundary layer 

For equations (20) Lighthill assumed the following solution: 

where $,a, P are functions of x only, which were determined by substitution into 
the integrated forms of the equations. The solution obtained by Lighthill can be 
written in the modified form 

a=--, 6 $ = -  t ,  i3 
E2 18 

and 
240 * 5 =  (-t;-) 23, 

where P = 1 - is the boundary-layer thickness) and where higher powers 
of 6 in the expressions for S and $ have been neglected so that 5 may be expressed 
in terms of x in manageable form. This procedure is accurate to within 2 or 3 % if 
t, is greater than los. 

(i.e. 

Radial profiles will be chosen for u, v, w, and t as follows: 
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where 0, y, h and 0 are functions of x only. It is assumed that the boundary- 
layer thickness remains independent of 8 despite the tilting. Martin (in a paper to 
be published) found very little variation of boundary-layer thickness with 8 in 
his experiments. 

If equations (27), (29), (28), (36) are written in the form of power series in [ and 
only the lowest power of ( is retained in each term, then we have 

d 
ax -(@.5)-y(l2+hf2) = 0. 

1 2 0  + 520 = 0, 

Solving for 0, 0, h and y to the lowest order in c, we find 

Figure . la  shows the streamlines in the plane of symmetry (8 = 0)  for t,  = 108 
and E = 1. It can be seen that fluid in the cool uniform core is drawn to one side of 
the cylinder by the component of external acceleration in that direction. In the 
boundary layer the fluid tends to flow around the circumference of the cylinder 
due to this component of the buoyancy force. Figure 1 b, which shows the projec- 
tions of the streamlines on to a cross-section of the cylinder, also illustrates the 
cool fluid moving towards one side of the cylinder. 

With these results equation (39) may now be written 

where again only the leading power in 6 is retained in the first term in the bracket. 
The value of 6 as a function of x quoted above is calculated from this equation 
where the second term in the bracket (due to perturbations) has been neglected, 
and hence is accurate only if e2x2 < 13. To find the effect of the perturbations upon 
the solution obtained by Lighthill, equation (41) with the perturbation term 
retained is solved for [ as a function of x by writing 6 = ( 2 4 0 / t l ) ~ d (  1 + 7) and 
neglecting squares and higher powers of 7. It is found that 7 = - 0.0063e2x2. If it 
is noted that, from (37), 

it  follows that the change in the Nusselt number is given by 
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Thus the secondary flow leads to a percentage increase of 0 . 1 7 ~ ~  in the Nusselt 
number. It can be seen that the increase in heat transfer is of the second order of 
small quantities taking the perturbations to be of first order of small quantities. 
The accuracy claimed for this perturbation solution is in the region of 25% 
provided that t ,  is greater than lo8, e is less than unity, and the Prandtl number is 
of order 10 or greater. 

x - 1  

x = o  B = l l  

FIGURE 1. (a) Sketch of streamlines in plane of symmetry (0 = 0) for t, = 108 and 
E = 1, i.e. for boundary-layer flow. ( b )  Sketch of projections of streamlines on to a cross- 
section of the cylinder (z = 0.75) for t, = 108 and E = 1. --- Denotes edge of boundary 
layer. 

This calculation was also carried out for the profiles as before except that 

and 

This had the effect of altering 0, A, and y by a factor of 3 approximately. The 
corresponding value of 7 was - 0 . 0 1 2 ~ ~ ~ ~  and the percentage increase in N, 
was 0 . 3 2 ~ ~ .  This may appear to be rather a large change for the alteration 
of the profiles but the approximate nature of the solutions must be borne in 
mind. 

Under the conditions of operation of a gas turbine E is of order unity, Hence 
this calculation suggests that the Coriolis force gives rise to an increase in heat 
transfer of order 1 % when the flow is laminar. 
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4. The similarity solution 
Lighthill found approximate solutions to equations (20) such that the depen- 

dence of U ,  T on T remains the same although an amplitude factor varies with x, 
the distance from the bottom of the tube. These solutions are 

5 
1 -pr2+- - -  

5 , 
t x  
24 

u = - 4/3x( 1 - 6r2 + 9r4 - 4r6) - 2- (r2 - 3r4 + 2r6),  

where the Prandtl number has been assumed infinite. Lighthill found 

t ,  = 311 and p =  2.091. 

If solutions of a similar type exist for the perturbations then it can be seen from 
equation (30) that w and v must vary with x and so from (27) that u varies with x2 
and from (29) that t must also vary with x2. Equations (31), (32), (34) and (30) 
with boundary conditions (19) are satisfied by 

u = As2r4(7 - 12r2 + 5r4),  

t = & 9 r 4 (  7 - 12r2 + 5r4), 

2# 4 st 
= x - $ + (- + __ (96 - 7p)) r2 + (@ - (96 - 7/31) r4], [ 3 720 3 720 

where A, 5 and $ are constants to be determined. 
From equation (27), we get 

15h-32$+6b = 0, 

b = 720 (96 - 7p). 

45+ 105h = 0; 

et1 where 

Also from (29), 

- + 5 (“p y+-+- 7 3:iO) 
(796 - 197/3) 

2800 
and from (28) 

= 0. 
(44259 - 5698) 26(388 - 96p) - 
x 11 x 25 x 27 +t13 x 5 x 7 x 9 x 11 

These equations give 
# = 3-76, h = - 6 * 2 ~ ,  E = 1606. 

Figure 2a shows a sketch of the streamlines in the plane of symmetry. It can be 
seen that there is a tendency for the cool fluid on the axis to be drawn to one side 
of the cylinder by the component of external acceleration in that direction. Also 
the hot fluid near the walls is influenced by this component of buoyancy force and 
at one side moves nearer the wall and at the other moves away from the wall. 
Figure 2 b, which shows the projections of the streamlines on to a cross-section of 



126 liI H, Leslie 

the cylinder, indicates clearly the fluid moving away from the wall of the cylinder 
at one side. It also shows the hot fluid moving around the circumference of the 
cylinder under the influence of the non-axial component of buoyancy force. 

After he obtained the profiles stated above for U ,  T ,  Lighthill found t, and p 
from (38) and (39) with the perturbation term in (39) omitted. Thus for the values 
of U, T found by Lighthill to  be valid the second term on the left-hand side of (39) 
must be negligible. However, if this term is retained to find the change in p and 

1 

x = l  

e = o  

r = O  e=n 
(a) ( 6 )  

FIGURE 2. (a) Sketch of streamlines in plane of symmetry (8 = 0) for t, = 311 and E = 0-03, 
i.e. for similarity flow. (b)  Sketch of projections of streamlines on to a cross-section of 
the cylinder (z = 1.0) for t ,  = 311 and E = 0.03. 

t, due to the presence of those perturbations, it  can be seen that /3 and t, now 
depend upon x. Using (40), equations (39) and (38) become 

I - d ptlx2(2/3+9) +L.- t2x2 13-p [ (1+;2) 105 4200 8 

+-[*x d 6 . 2 ~  ~ ~ O E ~ X ~ ]  = t x  ‘(12-@), dx 5 

and (24 + 7P) - - 48P 
t1 120 

(1 +; 2) ’ 
where t, and /3 vary with x. The solutions obtained by Lighthill are permissible for 
U ,  T if e2x2 < 3, since then the second term on the left-hand side of (39) is 
negligible. The two equations are solved to give 

t, = 311(1- O * O ~ E ~ X ~ ) ,  p = 2.091 - 0 * 3 8 ~ ~ ~ ~ ,  
and thus Na = 0.364 + O*09e2. 
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In  this case the percentage increase in the Nusselt number is 25e2. The accuracy 
of the perturbation solution is difficult to assess but cannot be expected to be 
more than 20 yo on account of the approximate methods used. 

However, for both ranges oft, investigated, i t  can be seen that there is an 
increase in heat transfer when the external acceleration makes a small angle with 
the axis of the cylinder and it appears reasonable to assume that this is so for the 
complete range oft,. 
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